Kentucky Watershed Monitoring Activities | Monitoring
Program/Activity | Responsible
Party/Branch | Program Mission/Summary of Activities | Sampling Schedule and Locations | Product | Data
Managei | |--|--|---|---------------------------------|---|-----------------| | Chemical/Physical Wat | ter Quality Parameter | Studies | | | | | Ambient Surface Water | Terry Anderson, DOW | The monitoring program is intended to provide information on ambient surface water quality in key KY watersheds and to provide data to support 305(b) and 303(d) reporting. The program consists of: - 45 fixed stations - physical and chemical parameters; fecal coliform during recreational season - biological and sediment monitoring at 12 stations - 6 to 8 lakes monitored during recreation season | through October | Annual
Report | | | USGS Surface Water
and Ground Water
Stations | Amy Haliday, USGS
Water Resources
Division | USGS collects records of stage, discharge, and water quality for streams and lakes; and water levels of wells. Annual reports for 83 stream-gaging stations, also includes water-quality data for 33 stations samples at regular intervals (*see attached list of monitoring sites). GW levels for 13 recording and 70 partial sites. | · | Kentucky
Water
Resources
Data Water
Year 1995 | | | Intensive Surveys | Mike Mills, DOW | 45 least impacted sites across State are monitored for algae, macroinvertebrates and fish as well as physical and chemical parameters used for reference Biological and chemical surveys of watersheds to assess problems | | Data Report Data Report | | | Monitoring
Program/Activity | Responsible
Party/Branch | Program Mission/Summary of Activities | Sampling Schedule and Locations | Product | Data
Managei | |--|---|---|--|-------------------|---| | Chemical/Physical Wa | ter Quality Paramater | Studies (Continued) | | | | | Lake Studies during
Stratification (April -
September) | Pat Neichter, USACE
Hydrology and
Hydraulics Branch,
Water Management
Section | Monitor ambient water quality conditions at Corps projects and support project operations to meet authorized project purposes and Federal and State water quality standards. Data and samples are usually taken 4 times during the summer at inflow, outflow, and lake sites. | Fixed sample sites in: Barren River Lake, Green River Lake, Nolin River Lake, Rough River Lake, Buckhorn Lake*, Carr Fork Lake, Cave Run Lake**, Taylorsville Lake Field data recorded using instrumentation for pH, DO, and temperature. Water samples are taken for lab analysis of metals, chlorophyll a, N, and P. Algae and invertebrate samples are taken from inflow, outflow, and lake sites. Four sample events in 1995, except: *=1 sample event **=10 sample events | Annual report | Field and laboratory c are maintain Corps datal and eventus sent to STC | | Lake Profiles (April -
September) | Pat Neichter, USACE
Hydrology and
Hydraulics Branch,
Water Management
Section | Depth profiles of temperature and DO taken weekly at the dam during reservoir stratification. Data uses include the operation of selective withdrawal systems at projects to provide dam releases to meet downstream water quality criteria. | Weekly profiles from: Barren River Lake, Green River Lake, Nolin River Lake, Rough River Lake, Buckhorn Lake, Carr Fork Lake, Cave Run Lake, Taylorsville Lake Temperature and DO measurements are made from calibrated instrumentation. | Weekly
Reports | Water and a
temp., DO,
water eleva
dBase form
Data plotter
Clipper and | | Monitoring
Program/Activity | Responsible
Party/Branch | Program Mission/Summary of Activities | Sampling Schedule and Locations | Product | Data
Managei | |--|---|--|--|---|--| | Chemical/Physical Wa | ter Quality Paramater | Studies (Continued) | | | | | Priority Pollutant
Screening Survey | Pat Neichter, USACE
Hydrology and
Hydraulics Branch,
Water Management
Section | Sediment elutriate samples are tested every 5 years for the presence of priority pollutants.(*see attached list of compounds) | Most recent surveys: Barrer
River Lake '95, Green River
Lake '94, Nolin River Lake
'96, Rough River Lake '96,
Buckhorn Lake '94, Carr
Fork Lake '96, Cave Run
Lake '96, Taylorsville Lake
'93 | Annual
Reports | Field and lab
maintained ir
databases | | Dredge Material
Analysis | Pat Neichter, USACE
Hydrology and
Hydraulics Branch,
Water Management
Section | Analyze sediment samples to screen for contamination that may affect disposal of dredged material from the Ohio River adjacent to locks and mooring areas. | Lock and dam projects at:
Marcland, McAlpine,
Newburgh, Uniontown,
Smithland | Sediment
evaluation
report | Field and lab
maintained ir
databases | | Remote Monitoring | Pat Neichter, USACE
Hydrology and
Hydraulics Branch,
Water Management
Section | Measurement of water quality variables on the lower Ohio River and specific reservoir sites with remote monitors and telemetry. | Telemetered sites-DO and temp: Ohio River - Cannelton L&D - Newburgh L&D - Smithland L&D - Uniontown L&D Barren River Lake - Inflow of Boyds Cr.Caesar Creek Lake - Inflow Cave Run Lake - Inflow, for chlorides | Monthly and
Annual
Reports | Data maintai
Corps databa
eventually se
STORET | | Contaminant
Investigations | USFWS | Assessments include fish and wildlife tissue, egg, blood, water and sediment samples for reproductive hormones, organic and inorganic contaminants, and physicochemical parameters. | Periodic sampling in
Tennessee R., Cumberland
R., and Mississippi R. and
adjacent counties | Reports to
participating
federal,
state, and
local
entities. | GIS, ECDMS | | Water Resource
Investigations | USFS/Daniel Boone
National Forest, Jon
Walker, Hydrologist
Vickie Bishop,
Fisheries Biologist | Monitoring data are used to prepare Water Resource Inventory Reports on a watershed basis, develop forest plans, and write environmental assessments and biological evaluations. Principal parameters include inorganics and physical habitat. | Watersheds within Daniel
Boone National Forest (see
attached). | Water
Resource
Inventory
Reports | Water data ir
ORACLE. P
habitat data i
dBase. Devi
GIS layers. | | Monitoring
Program/Activity | Responsible
Party/Branch | Program Mission/Summary of Activities | Sampling Schedule and Locations | Product | Dat
Manage | |--|--|---|---|---|--| | Chemical/Physical Wa | ter Quality Paramater | Studies (Continued) | | | | | Ground Water
Monitoring Network | DOW/Ground Water
Branch/James Webb | Assessment of ambient ground water quality throughout the State; support wellhead and ground water protection plans and 319 studies. | 70 sites representing each of KY's physiographic provinces sampled quarterly for 60 parameters including metals, pesticides, and nutrients. VOCs samples at select sites. | raw data
available from | Paper files
data base
Bill Yarnel
Bart David
KGS | | Nonpoint Source
Pollution (NPS)-319(h)
Demonstration Projects
and Contractual
Projects | Corrine L. Wells,
DOW/Water Quality
Branch | Provide funding of efforts to mitigate deterioration of water quality due to nonpoint source pollution impacts in Kentucky watersheds and collect and disseminate water quality data documenting pre-and post-best management practice (BMP) implementation of multiple projects with various types of monitoring: - physical and chemical - fecal - biological - fish tissue | Sampling schedules and locations vary for each of numerous contractual and demonstration projects: - pre-BMP - post-BMP - recreational season - storm events | Demonstration Projects: - pre-BMP report - final close- out report Contractual Projects: - annual reports - final close- out reports | | | Kentucky Groundwater
Monitoring Network | Phil Conrad, KGS,
Water Resources
Section | State network that collects groundwater samples, amasses data from other organizations, and summarizes/characterizes groundwater resource to: (1) provide baseline data on ambient groundwater resources, (2) characterize ambient groundwater resources in publications, and (3) disseminate information collected and created by the network. | Variable schedule. Now selecting new sites for ground water sampling. | "Framework for
the Kentucky
Groundwater
Monitoring
Network"
Working on
summary
document. | Data Repo
KGS, Bart
Davidson. | | Monitoring
Program/Activity | Responsible
Party/Branch | Program Mission/Summary of Activities | Sampling Schedule and Locations | Product | Da [.]
Manag | |---|---|---|---|--|------------------------------| | Chemical/Physical Wat | ter Quality Paramater | Studies (Continued) | | | | | Hydrogeology of
Agricultural Lands | James Currens, KGS,
Water Resources
Section | To determine the quality of groundwater in agricultural areas of Kentucky. Projects are developed as funding becomes available. | Ongoing; well installation and selection of monitoring sites is irregular as projects develop. Collected approximately 500 spring, stream, and well samples in FY 96. Sampling at each site varies from hourly to quarterly. | | GW Data
Repositor
KGS. | | Hydrogeology of Karst
Terrains | James Currens, KGS,
Water Resources
Section | To develop an understanding of karst aquifers in the State for their promotion as a groundwater resource and to minimize economic loss from pollution, sinkhole flooding, or sinkhole collapse. | Varies with specific projects and issues. Collapse sinkhole and flooding investigations are conducted as the events occur. Dye tracing and aquifer characterization are conducted seasonally. Water quality monitoring ongoing. | Maps, reports,
and data
bases;
publications. | KY GW D.
Repositor | | Dye Tracing and
Kentucky Dye Tracing
Database | James Currens, KGS,
Water Resources
Section | Maintain a database and files of groundwater dye trace data for use in preparing maps and reports and for public access. | Ongoing, varies with receipt of new data. | Summary data tables | KY GW D
Repositor | | KWRRI Research
Project | Barbara Ramey, EKU | Chemical and biological monitoring of a constructed wetland on Jones Branch acid mine drainage | Jones Branch | 1995
Research
Report No.
192 | | | KWRRI Research
Project | Lyle V.A. Sendlein,
KWRRI | Groundwater study at the Toyota Motor
Manufacturing Plant in Georgetown, KY | Georgetown, KY | 1995
Research
Report No.
194 | | | KWRRI Research
Project | Lindell Ormsbee,
KWRRI | CSO impact assessment for the Licking
River; CSO impact assessment for the
Banklick Creek | Licking River Bancklick
Creek | 1995
Research
Report Nos.
UKCE9502,
UKCE9501 | | | Monitoring
Program/Activity | Responsible
Party/Branch | Program Mission/Summary of Activities | Sampling Schedule and Locations | Product | Da
Manag | |---|---|---|--|--|----------------------| | Chemical/Physical Wa | ter Quality Paramater | Studies (Continued) | | | | | Compliance Monitoring | Neil Woomer, TVA
Env. Compliance | Provides toxicity monitoring data for regulatory compliance reporting | Monthly at Paradise (Green R.) and quarterly at Shawnee (Ohio R.) power plants | Compliance
Reports | | | SDWA Compliance
Monitoring | Vicki Ray, DOW/DWB | Determine compliance with the regulations for: - 526 community water systems - 114 transient PWS - 124 nontransient non-community PWS | Each PWS submits a list of sample sites for approval, samples are collected from these sites monthly, quarterly, annually and must be analyzed for specific contaminants by a certified laboratory and results submitted to DWB. | Violations of
standards are
generated
during various
compliance
periods.
Various letters
and reports. | KYSDWIS
SAS softw | | Landfill monitoring | George Gilbert, Solid
Waste Branch, DWM | The monitoring program is intended to provide information non both surface and groundwater quality and to ensure that the landfill is not contaminating the waters of the Commonwealth. The program consists of approximately: - 198 surface water monitoring points - 297 groundwater monitoring points - chemical parameters found in 401 KAR 48:300 | | Quarterly
monitoring
report | | | UST site investigation and assessment | Submitted by the facility owner's consultant to be reviewed by the Corrective Action Section of the UST Branch, DWM | Groundwater (and soil) samples are collected in order to determine the extent of contamination from UST (primarily petroleum constituents, i.e., BTEX, PAH's, lead, etc.). Ground water flow rate and direction also collected. | Sample coverage area is typically less than 400 sq meters (the size of a gas station lot) but the areas can easily be much greater. Data gathered up to 2 years and over variable sample areas. | Site
Investigation
Report | | | UST Corrective Action plan formulation and implementation | Submitted by the facility owner's consultant to be reviewed by the Corrective Action Section of the UST Branch, DWM | Develop and implement a plan to remediate the contamination identified in the above process. | Most data collected during site investigation. | Corrective
Action Plan | | | Monitoring
Program/Activity | Responsible
Party/Branch | Program Mission/Summary of Activities | Sampling Schedule and Locations | Product | Dat
Manage | |--|---|--|--|--|---| | Chemical/Physical Wat | ter Quality Paramater | Studies (Continued) | | | | | UST formal quarterly ground water monitoring | Submitted by the facility owner's consultant to be reviewed by the Corrective Action Section of the UST Branch, DWM | Groundwater samples collected from the affected area and analyzed for contaminants involved in site contamination. | Samples are collected quarterly from as many points as necessary over the affected areas. The number of sampling points is variable and site-specific. | Quarterly
Monitoring
Report | | | Oversight Ground Water
Monitoring | Dale Burton,
Corrective Action
Section, HWB, DWM | Facilities required to conduct long-term groundwater monitoring are evaluated every three years. At least 4 wells (1 up, 3 down) are monitored semi-annually at each site, although more monitoring sites may be required. Typical parameters include heavy metals, volatile organic compounds, and semi-volatile compounds. | Currently approximately 50 sites are undergoing monitoring. | Comprehensiv
Groundwater
Monitoring
Evaluations | | | Unscheduled
Groundwater and
Surface Water
Monitoring | Dale Burton, DWM | Occasional samples are taken outside of regulatory requirements. | Sampling locations
generally near hazardous
waste management
facilities. | Notices of
Violation | | | Superfund Site
Assessment | Herb Petitjean,
Superfund Branch,
DWM | Superfund Branch conducts sampling to - establish the presence, levels and extent of contamination at potential abandoned or uncontrolled waste sites - establish the attribution of observed releases - insure the effectiveness of remediation activities - monitor those sites where waste is contained in-place | varies with sites. Statewide summary of media, frequency, and parameters samples is not readily available. | Individual site
reports | Paper report maintained DWM.GIS being developed data maint EPA. | | Continuous Emissions
Monitoring andIndustrial
Air Monitors | DAQ, Technical
Services Branch;
Larry Garrison, DWM | Determine compliance with ambient air standards; assess air quality trends; and assess effectiveness of regulations and programs. | 102 continuous monitors
for criteria pollutants
(except Pb and PM10); 35
air toxics monitors at 7
sites in tri-State area; 2
acid deposition monitors | KY Ambient
Air Quality
Annual Report | Data retrie
from remo
monitoring
and stored
mainframe
EPA AIRS | | Monitoring
Program/Activity | Responsible
Party/Branch | Program Mission/Summary of Activities | Sampling Schedule and Locations | Product | Da
Manag | |--|-----------------------------|--|--|---|---------------------------------| | Chemical/Physical Wa | ter Quality Paramater | Studies (Continued) | | | | | Bimonthly Sampling | ORSANCO | detection of long term trends; biennial assessment of aquatic life use support; ambient WQ conditions; problem identification 31 fixed stations physical/chemical water column monitoring | - bimonthly grab samples - 17 Ohio River sites and 14 major tribs location descriptors include lat-long, GIS, and river mile | - semiannual
Quality Monitor
publication
- 305(b)
Report
- Trends Report | STORET | | Organics Detection
System | ORSANCO | detection of VOCs/spills; biennial assessment of public water supply use support 14 fixed stations-water column monitoring for 22 volatile organics | - daily or more frequent
grab samples
- 11 Ohio River sites and 3
tribs
- locations descriptors
include lat-long, GIS, and
river mile | - semiannual
Quality Monitor
publication
- 305(b)
Report
- Trends Report | STORET,
data base
Paradox | | Contact Recreation | ORSANCO | assessment of contact recreational use support; notification to health depts. on suitability of conditions for contact recreation; evaluation of urban impacts on bacteria levels 6 fixed stations fecal coliform, E. Coli | - 5 grab samples per
month; May-October
- sites are downstream of
major urban areas
- location descriptors
include lat-long, GIS, and
river mile | - 305(b)
Report | in-house (| | Interrogation of
Dissolved Oxygen
Monitors | ORSANCO | assessment of suitability for aquatic life; identification of need to modify hydropower operations 13 fixed stations; owned and operated by USACOE and hydropower-operators ORSANCO does not generate these data, but interrogates and reports results DO and temperature | - hourly measurements - sites at 12 dams and one power plant - weekly interrogations of data from May-October | - monthly
Quality
Updates to
States | - hard cop | | Water Quality Instream
Monitoring | MSD, Terhune/Nichol | provide baseline water quality data;
document impact of package plant
removal; assess point source impacts;
adjust metals interference; evaluate
nutrient processes; identify
contamination of food chain | - routine sampling
- physical parameters,
chemical (nutrients,
metals, etc.), and
biological (macros, fish,
bacteria) | MSD stream
reports, State
305(b) Reports | lotus and | | Monitoring
Program/Activity | Responsible
Party/Branch | Program Mission/Summary of Activities | Sampling Schedule and Locations | Product | Da
Manag | |-----------------------------------|---|--|---|---|------------------| | Chemical/Physical Wa | ter Quality Paramater | Studies (Continued) | | | | | Emergency Response | MSD, Terhune | response to emergency spills/releases to/near streams which may impact aquatic community; protect environment, sewers, public | incident related sampling | enforcement
and mitigation | IWIS | | CSO Sampling | MSD/RGEV, Inc. | evaluate impacts to water quality due to overflow discharges | - samples collected for two
rain events at 5-6 CSOs
- TS, TVSS, BOD, TSS,
settleable solids; instream
sampling - fecals, pH,
solids, metals, toxics, DO,
sediment, nutrients,
bioassessment
- MSD will maintain some
stormwater outfall sampling | | Hard cop
file | | Biological/Habitat Ass | essments | | | • | | | Rare Species Surveys | USFWS | Identify populations and habitat requirements | Variable sampling schedules | Management
Plans,
Recovery Plans | GIS GAP | | Native/Baseline Mussel
Surveys | USFWS | Mussel population monitoring | Annual Ohio River
sampling; may conduct
surveys in Green and
Licking R. In FY 97. | Management
Strategies,Rec
Plans | GIS | | Water Resource
Investigations | USFS/Daniel Boone
National ForestJon
Walker,
HydrologistVickie
Bishop, Fisheries
Biologist | Monitoring data are used to prepare Water Resource Inventory Reports on a watershed basis, develop forest plans, and write environmental assessments and biological evaluations. Principal parameters include inorganics and physical habitat. | Watersheds within Daniel
Boone National Forest (see
attached). | Water
Resource
Inventory
Reports | | | Monitoring
Program/Activity | Responsible
Party/Branch | Program Mission/Summary of Activities | Sampling Schedule and Locations | Product | Da
Manag | |--|--|---|---|---|--| | Biological/Habitat Ass | essments (Continued |) | | | | | Inventory and
Classification of
Streams | KDFWS; Jim Axon | Inventory and classify streams of fishery importance and re-inventory certain streams; to assess current fish population and stream habitat conditions. | All major drainage basins completed since the 1960's except for some Ohio R. tributaries; Order II and larger sampled for fish species, composition, and physical/chemical characteristics. | Annual
Performance
Report | Paradox (
manages
data; devi
data layei | | Warmwater Streams
Investigation | KDWFS; Jim Axon | Determine the status of sport fisheries in warmwater streams or importance and develop fish management plan. | Short-term, finite studies direct at fish stock assessments. | Annual
Performance
Report | Paradox (
manages
data; devi
data layei | | Nonpoint Source
Pollution (NPS)-319(h)
Demonstration Projects
and Contractual
Projects | Corrine L. Wells,
DOW/Water Quality
Branch | Provide funding of efforts to mitigate deterioration of water quality due to nonpoint source pollution impacts in Kentucky watersheds and collect and disseminate water quality data documenting pre-and post-best management practice (BMP) implementation of multiple projects with various types of monitoring: - physical and chemical - fecal - biological - fish tissue | Sampling schedules and locations vary for each of numerous contractual and demonstration projects: - pre-BMP - post-BMP - recreational season - storm events | Demonstration Projects: - pre-BMP report - final close- out report Contractual Projects: - annual reports - final close- out reports | | | Intensive Surveys | Mike Mills, DOW | 45 least impacted sites across State are monitored for algae, macroinvertebrates and fish as well as phys/chemical parameters used for reference Biological and chemical surveys of watersheds to assess problems | | Data Report Data Report | | | Zebra Mussel
Monitoring | Benny Kerley, TVA
Env. Compliance | Provide status of zebra mussel populations at intakes of TVA power plants. | Twice weekly at Paradise and Shawnee power plants (April - November) | Internal Report | | | Monitoring
Program/Activity | Responsible
Party/Branch | Program Mission/Summary of Activities | Sampling Schedule and Locations | Product | Da
Manag | |--|---|--|--|---------------|---| | Biological/Habitat Asse | essments (Continued |) | | | | | Reservoir Catch
Depletion Surveys | Donny Lowery, TVA
Clean Water Unit | Provides data and information on density, biomass, health and condition o black bass populations for use in fishery management decisions by State. | | Annual Report | | | Stream Bioassessments | Richard Starkey, TVA
Clean Water Unit | Support river action teams to assess aquatic resource conditions of hydrologic units. Index of biotic integrity is used for fish communities, and rapid bioassessment protocols (EPT and nutrient tolerant) for macroinvertebrates. | | Annual Report | | | Vital Signs Monitoring | Don Dycus, Dennis
Meinert, TVA Clean
Water Unit | Provides information on the ecological health of TVA reservoirs and major tributary streams to rate the system for fishable, swimmable uses. Includes physical, chemical, and bacteriological sampling, fish tissue analysis, and fish and benthic community diversity assessment. | - 4 sites in Kentucky Reservoir (1 in KY at TRM 23) monthly during summer for DO, pH, nutrients, chlorophyll; annual in autumn for sediment (metals, pesticides); annual for diversity of fish and benthic communities; bacteria surveys at 19 sites during summer - Clarks R. Mile 9.8, quarterly physical, chemical; annual fish and benthic community | | Data entry
STORET | | Endangered Species
Monitoring Program | R. McCance, KY
State Nature
Preserves
Commission | Identify the location of species considered rare in Kentucky by the KSNPC and USFWS and periodically verify their continued existence. | Statewide sampling focusing on individual watersheds. Rare plants counted to determine population status. | | Biological
Conserva
Database
KSNPC | | Monitoring
Program/Activity | Responsible
Party/Branch | Program Mission/Summary of Activities | Sampling Schedule and Locations | Product | Da
Manag | |---|---|---|--|---|---| | Biological/Habitat Ass | sessments (Continued |) | | | | | Freshwater Mussel
Monitoring Program | R.R. Cicerello,
KSNPC | Monitoring program for freshwater mussels in the Green River within Mammoth Cave National Park. | Project completed in 1997.
Quadrat sampling in 95 and
96 at miles 198.6 and
206. Species composition,
length frequency, and
reproductive success. | Interim
Progress
Report | BCD at K | | Biological Monitoring | ORSANCO | - development of aquatic life assessment criteria; assessment of aquatic community health; characterization of habitat - currently 2 pools per year are being assessed - multiple sites and sampling events are conducted in each pool - fish population and macroinvertebrate surveys - habitat characterization | surveys are conducted at
approximately 20 sites per
pool; 500 meter zones
- macroinvertebrate
sampling conducted at | - development
of biological
criteria
- riverwide
habitat
characterizatio
Information
System
Database | - fish popi
and macrinvertebra
stored in
- habitat c
spreadshi
- Biologic
Informatic
System o
electronic
board | | Fish Tissue | ORSANCO | - assessment of fish consumption use support for human health protection - facilitate states' issuance of fish consumption advisories | - approximately 12 Ohio
River sites per year
- channel catfish, carp, and
game species sampled at
each site
- tissue analyzed for PCBs,
pesticides and metals, and
dioxin | - annual
summary of
results to
states; teleconf
of states to
coordinate
issuance of
Ohio River fish
consumption
advisories | in-house | | Hydrology/Hydraulic F | Process Studies | | | | | | Basin Hydrology | Dan Carey, KGS,
Water Resources
Section | Develop a data base on small watershed hydrology for a variety of setting in Kentucky. Use data to develop better models of surface and ground water movement and the associated movemer of contaminants. | stations were installed in
the Eastern Coal field.
Nine stations were installed | Continuous and
storm flow data
and water
quality data. | Ongoing | | Monitoring
Program/Activity | Responsible
Party/Branch | Program Mission/Summary of Activities | Sampling Schedule and Locations | Product | Da
Manag | | | |--|--|---|---|---|----------------------------------|--|--| | Hydrology/Hydraulic Process Studies (Continued) | | | | | | | | | Water Supply | David Wunsch, KGS,
Water Resources
Section | Presently funded to study the occurrence of high-yield wells in coal field area using remote sensing and GIS technologies. | | Reports with
data and
recommendatio
for well
locations. | KY GW D
Repositor | | | | Kentucky Groundwater
Monitoring Network | Phil Conrad, KGS,
Water Resources
Section | State network that collects groundwater samples, amasses data from other organizations, and summarizes/characterizes groundwater resource to: (1) provide baseline data on ambient groundwater resources, (2) characterize ambient groundwater resources in publications, and (3) disseminate information collected and created by the network. | Variable schedule. Now selecting new sites for ground water sampling. | "Framework for
the Kentucky
Groundwater
Monitoring
Network"Worki
on summary
document. | Data Rep
KGS, Bar
Davidson | | | | USGS Surface Water
and Ground Water
Stations | Amy Haliday, USGS
Water Resources
Division | USGS collects records of stage, discharge, and water quality for streams and lakes; and water levels of wells. Annual reports for 83 stream-gaging stations, also includes water-quality data for 33 stations samples at regular intervals (*see attached list of monitoring sites). GW levels for 13 recording and 70 partial sites. | See attached list of sites. | Kentucky
Water
Resources Data
Water Year
1995 | | | | | Land Use/Soils/Other S | Studies | | | | | | | | Cooperative Soil Survey | Bill Craddock,
USDA/NRCS | Soil survey is intended to provide information about the spatial distribution, physical properties, and use interpretations of soils in a survey area. | Ongoing. Refer to soil survey progress map. | Soil Survey
Publication | Soils | | | | National Resources
Inventory (NRI) | Bill Craddock,
USDA/NRCS | The NRI is intended to provide information about natural resource trends in the United States. The NRI is an inventory of land cover and use, soil erosion, prime farmland, wetlands, and other natural resource characteristics on nonfederal rural land in the United States. The NRI also provides a record or resource trends over time. | Nationwide. Conducted every 5 years. | NRI data base. | Land use | | | ## Kentucky Basin Assessment Tools | Assessment Activity | Responsible Party/Contact Person | Setting/Reason for Application | |---|--|--| | Fish and Wildlife Contaminant and Hormone Analysis | USFWS/Patuxent Analytical Control Facility, Laurel, MD | Fish and wildlife contaminant occurrence and population asses | | 303(d) Analyses | DOW | Surface water use assessment | | KPDES Permit Limits | DOW | KPDES compliance assessment/instream activities | | Surface Water Quality Standards | DOW | Use assessment | | Maximum Contaminant Limits/Goals | Vicki Ray, DOW/DWB | Public health | | Bacteriological Assessment | DOW | Recreation use assessment | | Trophic Status Assessment | DOW | Aquatic life use assessment | | Biological Indices (algae, fish, IBI, macroinvertebrates) | DOW | Comparison streams (least impacted) | | FDA Action Levels or Risk Levels | DOW | Surface water use assessment | | Reservoir Water Quality Modeling | Pat Neichter, Hydrology and Hydraulics
Branch, USACOE | Water quality model (CEQUAL-W2) will be applied to Taylorsvi
The model will be used to evaluate proposed changes in land upractices in the watershed relative to water quality in the reserving | | Tools for Groundwater/Surface
Water Interaction | Jim Dinger, KGS/Water Resources Section | Determine interaction between surface water and groundwater of groundwater, groundwater discharge and recharge zones, w GW on SW quality and quantity. | | Tools for assessing water quality for drinking and other uses | KGS | EPA MCLs, secondary quality standards, water-quality needs tagriculture, livestock, industry, water-chemistry models, water-statistics. | | Tools for karst groundwater basin delineation | James Currens, KGS/WRS | Ground water dye tracing (qualitative and quantitative), spring measurement, potentiometric surface mapping (synoptic water continuous monitoring capability, cave maps. | | Tools for water-chemistry/quality modeling over time and flow systems | David Wunsch, KGS/WRS | Model applications including PHREEQE, MINTEQ, BALANCE, water quality and chemistry evolution over time and changes w | | Assessment Activity | Responsible Party/Contact Person | Setting/Reason for Application | |--|--|---| | Tools for assessing the quality of groundwater resources | Phil Conrad, Jim Currens, KGS/WRS | Sampling, field measurements of private wells, springs, monito streams; analyses for nutrients, pesticides, inorganics and organises current and changing ground water quality. | | Tools for hydrologic modeling for surface water quantity and quality | Dan Carey, Alex Fogle, KGS/WRS | Computer modeling using ANSWERS, AGNPS, SWRBBWQ, a | | Fish tissue | Don Dycus, TVA Clean Water Initiative (CWI | Reservoir ecological health assessments | | Bacteriological assessments | Joe Fehring, TVA CWI | Reservoir swimming areas assessments | | Trophic status assessments | Dennis Meinert, TVA CWI | Reservoir ecological health assessments | | Fish populations | Donny Lowery, TVA CWI | Reservoir stock depletion surveys | | Stream bioassessments | Bob Wallus, TVA CWI | Hydrologic unit (streams) fish and benthic assessments | | Zebra mussel assessments | Benny Kerley, TVA CWI | Water intake (reservoirs) populations |